Fermilab TM-1240

2311.000

EPICS SYSTEM: RSX IMPLEMENTATION ISSUES™

T. E. Lahey, J. F. Bartlett, J. S. Bobbitt, B. J. Kramper,
B. A. MacKinnon, and R. E. West

February 1984

*Submitted for publication in the Proceedings of the Digital
Equipment Computer User Society, Las Vegas, Nevada, October 1983.

EPICS SYSTEM: RSX IMPLEMENTATION ISSUES

T. E. Lshey
J. Frederick Bartlett, J. S. Bobbitt, B. J. Kramper
B. A. MacKinnon, R. E. West
Fermi National Accelerator Laboratory
Batavia, Illinois

ABSTRACT

) This paper presents implementation details of the
Experimental Physics Interactive Control System (EPICS).
EPICS i3 used to control accelerated particle beams for
high-energy physics expariments at the Fermi National
Accelerator Laboratory. The taopics discussed are:
interprocessor communication, support of beamline terminals
and devices, resource managemeant, mapping, various prodlems,
some - solutions to the problems, performance measurement, and

modifications and extensions to RSX-11HM.

This paper is the third of three related papera on the

EPICS system.

The other two cover (3) the system overview!

and (2) the system structure and user interface.

INTRODUCTION

EPICS is implemented with
PDP-11'm.

RSX11M running on

The hardware coafiguration (figure 1) includes two
closely-coupled PDP-11's: an 11/44 and an 11/34.
The 11/44 is a level-2 computer that runs the user
comxand language, utilities, and the device
database. The 11/34 is a 1level-3 computer that
reads end writes bYesxline devices and creates an
interrupt environment for the level-2 computer. The
conputers are coupled with shared memory and a
D211-C interrupt link. The shared memory is located
ox a shared UNIBUS. Also loceted on this shared
UNIBUS are the serial CAMAC controller and TIMER
controller.

The serial CAMAC controller is a speclal-purpose
controller providing access to serial CAMAC. The
CAMAC system runs throughout the experimental areas
end supports modules for interfacing to beamline
devices, terminala, and experimenter computers. The
CLMAC system does not provide asynchronous demands,
so the level-3 polls 21l CAMAC modules. The serial
CAMAC controller reads commands from and stores .data
in shared nemory.

The TIMER is a second special-purpose controller
that synchronizes the level-2 and level-J computers
to the external accelesrator clock. The accelerator
clock generates timing pulses that announce events,
such a3 the start of an accelerator cycle and
delivery of bYeam to the experiments. The TIMER

resides on the primary UNIBUS of the level-3
cozputar. The CAMAC controllsar and TIMER arz

level-4 computers.

Proceedings of the Digital Equipment Computer Users Society

. 229

Currently, the level-2 computer runs RSX~{1¥ and the
level-3 coamputer runs a satripped-down version of
RSX-11M that is equivslent to RSX-115. A separate
diagnostic seystem for the EPICS hardware runs
RSX-11S on both computers. The level-3 coaputer has

no disk. It is downloaded from the level-2 computer
by using the DR11-C, shared memory, and the 11 /34
boot ROM.

POP-N/44 -
13/4M BYTE ! ’
l UNIBUS A
g gg:t UNISUS C
T
COUPLER, L
oRIc] 54K
UNIBUS B
POP-11/34A s
64K BYTE COAXIAL
CABLES
CAMAC
CRATE
o
] 3
% 8

. Pig. 1 EPICS Hardware Configuration

Las Vegas, Nevada - October, 1983

ISTERPROCESSOR COMMUNICATION

The DR11-C and shared menmory are wused for
interproceasor communication. There ara three
partitions in sharsd memory: one owned by the
level-2 computer, ons owned by the level-3 coaputer,
eand one containing coamunication queues. The
initiating tesk creates a message in shared memory,
and sends it to another task via a comsunication
queus. The 4initiating task enters fork state and
calls a communication routine to enqueue the message
on a comaunication queue. When the receiving task
is on the sane processor, the communication handler
enqueues the message on the proper queue. When the
receiving task is on the other processor, the
communication handler sends the address of the
message, via the DR11-C, %o the other processor.
The comaunication handler on the target processor
enqueues the message on the proper queus. If a task
owns the communication quene, the communication
handler informs the task about the arrival of a
message by setting an event flag or issuing an
Asynchronous Syster Trap (AST). The receiving task
calls &8 routine to dequeue the message. The DR11-C
A ang 5 interrupts are supported with conmnect ¢to
interrupt routines (CINTS) in an RSX task.

"BEAMLINE TERMINALS SUPPORT

Figure 2 shows the path through the system for
access to a <terminal. The user command language
(CBASIC) and the utility tasks issue QIO's that are
supported w#ith a ninimal driver and the Terminal
Ancillary Control Processor (ACP). The ACP
coaxuzicates with the level-3 terminal handler via
ahared-memory messagea and comaunication queues.
These messages are input and output lines. The
level-3 terminel handler performs low~level
processing, e.g. , local-echoing and intra-line
editing, and schedules polling of the terminals that
are physically connected via serial CAMAC.

BEAMLINE DEVICE SUPPORT

Figure 3 shows the path through the system for
access to beamline devices. The utility tasks and
CBASIC issue QIO’s that are supported with a minimal
driver and the Request Formatter ACP. The Request
Fornaiter comunicates with the Disk Database Access
task, and uses the memory-resident device database
to perform initial processing on the device access
request. The Request Formatter sends the request to
the level-J Request Handler via communication queues
and shared nemory. This task converts the request
into & command list and sends the command 1list ¢to
the serial CAMAC driver for execution on the serial
CAMAC =ysten. Upon completion, the level-3 computer
process=s the datz and sends it up to the utility
task via the Ra2quest Formatter.

Utilities

Utilities are nonprivileged RSX tasks that typically
executz QIO0's to create a device access requesat,
traasfer a data buffer, and delete the device access
request. An exception to this is the Page utility
which is a nonprivileged task that repetitively
updates many device readings oa multiple terminals.
There can be & maximun of 8 page dJdisplays with 45
device readings each. Page updates up to 24 of
these rosadings every second, optionally updates
another 24 devices readings every 0.2 seconds, and

modifies the page displays in response t0 user
cozmmands,

230

CBASIC

TERMINAL
ACP

COMMUNICATION]" "~ ~| SHARED

HANDLER

—==} MEMORY

s " o -

CAMAC
CRATE

S
< W

LEVEL 2

LEVEL 3

LEVEL 4

Fig. 2 Support for Peamline Terminals

caasc race
| S -
TSk REQUEST '
OATABASE | FORMATTER | mm e m = = ~)
{access ace .
eeemy gt C {revee2
[. . .
I t '
CATABASE I
COMMON !
’ s
[
4
SHARED
...... WEMGAT
1)
s !
Vi
eV REQUEST Y
°§35'r‘&‘:'£" '"{""'“-"‘ St | evees
[}
L|‘ | R, 4 : H
(R}
1y
TIMER SERIAI 2
White| | G po--)
)
T L
I '
*
Ten Y |
Fnumout« NS e
LEVEL 4

CAMAC
CRATE

CAMAC
CRATE

Fig. 3 Support for Beamline Devices

-4~

ts device rscord is plac2d at the end of the LRY
list., On the naxt access to the device, the Requeat
Formatter hashes the device record, fiads it on the
LRU 1list, removes it, and atarts using the device
racord without invoking DDA. Whan new davice
records ara daing loaded, DDA retrieves the
least-recently~used record froa the front of the LRU
list and wuses it for the new daevice. . Al devices
that are no longsr bdeing accesssd are thus
eventually removed from the database common.

Aaother arza of resource managensnt i1s shaving of
data when two or more read requests are identical
with respsct to the device, attridute, and tina.
The EPICS system uses a data struciure in shared
menory called the shared data point. The 1level-3
couputer stores the data in the shared data point
vhere the data is accessibls by 211 processss that
got data directly from shared memory. For exanmple,
the Page utility rotrieves the sama data for all
usars which are displaying the device. In addition,
the level~J computer disiributes this Qata to all
duffers for utllities that are retrieving the data
in buffers. This mechanism gives us fewsr data
structures In shared wmemary, fewsr accesses to the
device, and fewer executions of routines that
process that data.

Resource managsment is applied to beamline terminal
support. On the level-3 couputer, thers are two
polling ratea: slow and fast. When no one is using
& terminal, it 4s polled at the slow rate of once
per second. W¥hen a user types the first character,
the level-3 computer starts polling the terminal at
the fast poll rate of 10 times per second. There is
a2 timeocut of five minutes applied to fast polling of
a terminal. If a user has not typed within this
time paried, the level-3 computer polls the terminal
at the alow polling interval.

‘Resource nmanagemant is implemented via the concepts
of (daofined torminals and active terminals. A
defined terninal is one which has besen identified to
the EPICS systen end vhich is polled by the level-J
computar., An active terminal is a terminal kaown to
RSX through an assigned Unit Control Block (UCB).
¥Yhen a user types at a defired ternminal, the
Termina)l ACP sttenpls to assign the terminal to a
terninal UCB, making i1t an active terminal. This
tochnique requires fewer UCB's in pool and hence
saves pool. There 1s also a timeout of active
torminals. If there is no actlvity on an active
terninal, it is disconnected from the UC3, 80 that
the act:.ve torminal port can be used for another

defined terninal. This timeout and the number of

active terminals allows us to support the maximum
runber of concurrent users without exceasive use of
pool. - At the current time thers are 24 defined
terninals, 10 activs terminals, and a timeout of 15
ninutes on active terminals.

The level-2 utilities implement resource wmanagement
via tirmeouts and resource quotas. For example, the
Database Editor cancels an editing session if a user
has typed =no commands within its timeout peried.
Page cencels a pesge display if 1t recelves no
coonands “froa the wuser within 1ts tinmeout perlod.
The Watch utility applies quotas on user reguests.
Each type of user is given a maximua nunber of Watch
resourcea that can be used. For example, an 'active
experiment can watch more devices than an inactive
one.

MAPPING

All tasks that acceas the databasa common a2nd shared
geaory npust dynanfcally pap to thoss aver
Curcaatly, the database common is 16K words =
shared mazory is 44K wordas.

The Disk Databasa Accesa task Is a nonprivileged
task that maps to the databass common via RSX PLAS
directivea.

To dacreas» the mapping time in many other tasks,
the tasks mnpap directly. The tasks nodify the
contents of the mappiag APR's on the I/0 page. For
a task to directly modify its mapping undar RSX, you
nust disable context switching. At the next context
switch, RSX will recalculate the values of ths
napping raglsters for the tas%k. On2 simple solution
is to _disadle context switching dy modifying the
variable SCXDBL. When nonzsro, the exscutive will
not switch to running a different task. So the task .
disables context awitching, ramaps and processss,
and then rasnables context switching. The next tims
that RSX switches the task out and back in, mapping
w11l ba as deacribed in the window blocks.

¥We are starting to use another method for remapping
a task. VWnea Duilding <the task, we allocate

.d3itional window bYlockas with standard RSK Task

Builder comzmands. While the task is running, ii
rodifiea the contents ‘of its window bdlocks to
dynazically remap. This allows fast remepping and
task switching while the task executes the section
of code in which it modifies mapping.

PROBLEUS

Many of the technical problens that we encounterad
wore related %o mapping. ‘There were also scus
prodleas with RSX pool. A minor problem was seen
with incorrset use of SWSTKS.

¥hea a %taak disables context switchinz for the
purposs of nodifying 4the rapping, the task caanot
issue any RSX diractive that lsads to a coantext
switche This caused ninor problems 1ralated to
nornal use of such directives. This caused major
problems related to use of the 0DT debugzing tool
aince it issues such directives.

Another prodlem with disabling coatext switching is
thet =& task can monopolize the CPU. Additionally,
you reduce your ability to tune the systen with
standard RSX tuning parametars, such as task
priority.

If you directly modify the mapping reglsters, anever
modify APR 0. It is mapped to your task header. At
minimuz, the Directive Status Word (DSW) for your
task is storad in your task header. The systea
coatinues %o update the location at the offset of
the DSYW into APR O.

Ao vith many RSX-114 applications, we had +typical
prodblens with pool. - Great ecare was required to -
achieve the largeat possible pool. Otherwise there
was not enough pool, especially on the level-2
coaputer, ' Additionally, when the amount of 2e
pool was low, it became difficult or impossib.. ‘to
diagnose or solve the prodlenma.

One ninor problem was the use of a SYWSTKS froa an
illegal APR. In a 20K executive, RSX processes a
SWSTKS by copying the user mapping registers 5 to 7

tﬁe corresponding kernal mapping regisers. The
exscutive then transfers control +to the code
collowing the SWSTKE. If this code is in APR O
shrough 4, the executive is not mapped to your code,
and
tne kernal address space.

to

SOLUTIONS

There are multiple solutions to the above problems,
some of which first became available during the
vevelopment of EPICS. i

.onversion from RSX-11M to RSX-11M+ on the 1level-2
zomputer may solve many problems, such as those with
pool. We will use multi-user tasks to reduce the
aumber of +tasks and hence the amount of task
swapping. Use of Instruction and Data Space gives a
larger task address space and can reduce the amount
of dynamic mapping.

For dynamic mapping of a task's address space, we
are increasing the usage of window blocks allocated
by the Task Builder and modified directly at
execution time. Another possible solution to some
of our mapping problems is to use a VAX.

To use ODT for debugging & task that disables
context switching while 1t remaps, we added the
ability to preserve the mapping of one task across
tagk switches. When debugging a task, the task
identifies itself as the task for which mapping is
preserved, and then remaps without disabling context
switching.

We can move the data structures associated with the
Request Formatter ACP from RSK pool to M+ secondary
pool or to another partition. Additionally, we are
moving all data structures that need not reside in
shared memory to other locations, thus using shared
memory only when required. More effective use of
this critical resource allows us to reduce
allocation restrictions and to extend the automatic
recovery timeouts.

For the comnmunication handler and TIMER handler, we
are converting to RSX drivers from the
connect-to-interrupt mechanism. This reduces the

time to handla an interrupt. Additionally, this
removes the context switch which occurs when these

devices are supported with an RSX task. The
privileged tasks will enter fork state and directly
queue commands to the drivers via the routine
SDRQRQ. Future code can be nonprivileged and access
the drivers via QIO's.

Newer versions of the compiler have featurss that
sllow us to write more code in PASCAL. This
provides for faster implementation and more
maintainable coda. We curvently have a
.stripped-down PASCAL run-time gystem that we will
use to write privileged code in PASCAL. For -

example, new versions of the Terminal ACP will be
coded in PASCAL.

We are considering a modification to the code which
supports SWSTKS, such that a PR:O task (privileged
without being mapped to the executive) can execute 2
SWSTX$ to enter fork state, provided the SWSTK$ code
is located in APR 5 or 6 for a 20K executive. We
will also check whether the task has executed the
SYSTKS from a legal APR.

it will execute whatever is at that location in

233

An improved method for support of critical sections
between the Disk Database Access task and Request
Formatter is the use of global event flaga. The
task priorities can then be gset according +to
relative processing priority of the tasks.

We are migrating the low-level terminal processing
from the level-3 computer to intelligent terminals.
This reduces the level-3 computer load and provides
better response to a user typing at the terminal.
In many cases, these terminals can be supported by =
local (level-5) computer, e.g., personal computer.
This method provides even more power to the user and
off-loads more functions from the 1level-2 and
level-3 computers.

PERFORMANCE MEASUREMENT

To increase the real-time response of the EPICS
aystem, we measured performance in two ways.

The first mathod involves attaching a logic state
analyzer +to the UNIBUS address lines. 3By attaching
the analyzer to the primary UNIBUS of the 11/44 or
11/34, we can observe relative execution of code on
that processor. By attaching the analyzer to the
shared UNIBUS, we c¢an observe overall use of the
shared memory by the 11/44, 11/34, and serial CAMAC
controller.

A second method involves use of a DR11-C attached to
an oscilloscope via TFermilab equipment that
conditions the DR11-C signals. An EPICS task or
driver sets and clears individual bits in the DR11-C
register to indicate its execution and its states.
The oscilloscope generates a trace of the reported
activity. We thus get a more detailed idea of
system activity and timing.

MODIFICATIONS AND EXTENSIONS OF RSX

To produce the implementation of EPICS that we have
described, we made minimal mnodifications and
extensions to the executive.

Currently there are two modifications to the systen.
First, the task switching code was changed +to
preserve the mapping of a single task across context
switches. Second, we modified XDT on the:level~3
computer so that the system would reboot without an
operator-entered command, i.e., G command to XDT.

Additional functionality was supported by extensions
to the executive. During the RSX system generation,
we added routines for allocation and deallocation of
shared menory and for interprocessor communication.
At system reboot, the RSX illegal instruction code
is extended by leading code into pool and changing
the executive code to branch to the new code. We
have programs to load and remove the illegal
instruction code whenever necessary.

As mentioned earlier, we will be modifying the
SWSTK$ code to allow its use from a privileged task
that is not mapped to the executive.

CONCLUSIONS

Many of the implementation techniques, such as the

use of ACP's, special-purpose drivers, and fast
execution of code are applicable to both RSX-11M and

to RSX-11M+. This discussion is wuseful for
time-critical RSX-11M applications on 18-dit
machines. Some of the methods we used in

implementing the EPICS control system can be avoided
by use of RSX~-11M+,

REFERFNCES

1. Bartlett, J.F., et al., "The EPICS System: An
Overview', DECUS Proceedings, Fall 1983.
2. West, R.E., et al., "EPICS System: System

Structure and User Interface", DECUS Proceedings,

Fall 1983.

234

